
Automating the Development of

Syntax Tree Generators

for an Evolving Language

Per Grape

National Defence Research Establishment

S���� �� Sundbyberg� Sweden

pelleg�atlas�sto�foa�se

Kim Wald	en

Enea Data AB

Box �
�� S���
 �
 T�aby� Sweden

kim�enea�se

Abstract

This paper describes an Ei�el system for rapid
testing of grammars� Grammars are de�ned in an
extended BNF notation that allows actions on the
parse tree nodes to be de�ned as additional an�
notations� The actions are high level descriptions
�not procedural code� to transform a parse tree
into a syntax tree� A parser� producing a syntax
tree for a language sentence� can be automatically
generated from the annotated grammar as a set of
classes�

The object�oriented environment permits a
much higher degree of separation between syn�
tax and semantics than is possible with tradi�
tional approaches� Structural grammar changes
can be made without a�ecting already developed
semantic routines� This gives a great advantage
for early compiler implementations� when the lan�
guage syntax is still evolving�

� Introduction

When a new language of some complexity is cre�
ated� this will often force the development of a
number of successive compiler versions to support
its evolving syntax and semantics� Although auto�
matic parser generators like yacc �Joh�	
 can ease
the developer�s burden a great deal� they have a
number of limitations that make compiler mainte�
nance hard for an evolving language�

Since the syntactic and semantic elements are
mixed in a yacc speci�cation� a large amount of
recoding will often be needed as a result of mere
structural changes to the language grammar� The
lack of separation between syntax and semantics
also makes it hard to write several processors
for the same language� such as compiler� static
checker� pretty printer etc�� without considerable
duplication of e�ort and risk of inconsistencies�
The abstraction support of a good object�oriented
language is what is needed to overcome some of
the limitations above�

This paper describes a parser generator writ�
ten in Ei�el �Mey�

 and a high�level notation for
specifying actions to transform a parse tree into a
syntax tree� The notation is based on basic graph
transformations on trees� such as adding and re�

�

moving vertices� contracting edges and rearrang�
ing vertices� Given a grammar with annotated
transformations� the generated parser will recog�
nise a syntactically correct sentence of the lan�
guage and deliver an abstract syntax tree� which
can then be further processed by semantic rou�
tines�

If the set of keywords and operators are fairly
stable during development of the language� then
the generated syntax trees are expected to be at
least as stable� regardless of structural grammar
changes� This makes it possible to work e�ciently
on the evaluation scheme before the language has
been frozen�

Since the syntax transformation directives are
high�level� the task of keeping them consistent
with the evolving language constructs becomes
easy� This may be contrasted with yacc� where
the actions to build a syntax tree have to be re�
coded in C each time the grammar is restructured�

The parser generator was designed to support
the development of an analytic query language
for geographical databases� called GeoSAL �SZ��
�
The work was carried out as part of a joint project
between the National Defense Research Establish�
ment� NobelTech Systems AB� and Ericsson Radio
Systems AB� The project is part of a national re�
search and development program in information
technology�

� The Ei�el environment

Among the attractive features of the Ei�el distri�
bution from Interactive Software Engineering Inc�
�ISE� are substantial class libraries supporting
basic data structures� lexical analysis� and pars�
ing �MN��
� Thus for the most part� there is no
need for the user to implement common data ab�
stractions� such as lists� hash tables� trees� stacks
and queues� since these are directly available and
easily tailorable through subclassing�

The lexical library supports grammars of reg�
ular expressions� and provides approximately the
facilities of lex �LS�	
� Instead of the preprocessor
approach of lex� the lexical classes contain oper�
ations to generate a lexical scanner from descrip�

tions in a �le� and store it in internal object format
in another �le for subsequent use�

The parsing library classes map the constructs
of an arbitrary LL��� grammar� and provide op�
erations for recursive descent parsing of the cor�
responding language �HM��
� This is di�erent
from yacc� which provides bottom up parsing of
LALR��� languages �for an overview of compiling
techniques� see for example �FL��
�� The family of
languages that can be expressed with LL��� gram�
mars is somewhat smaller than the correspond�
ing family for LALR��� grammars� On the other
hand� most well�designed programming languages
can be turned into LL��� form� Rare exceptions�
such as the C�Pascal dangling �else�� can usually
be taken care of by allowing the grammar to be
ambiguous and then let the parser apply disam�
biguating rules� �This technique is also employed
by yacc on LALR��� grammars��

Moreover� LL��� parsing has the advantage of
much easier error reporting and recovery for the
compiler� compared to the LALR��� technique� So
it suited our needs well� since we wanted to reduce
the e�ort of syntax control and spend as much
time as possible on the semantics of the language
under development�

� Object�oriented parsing

The idea underlying the Ei�el parsing library�
which is a direct application of the phrase �syntax�
directed compiling�� is to model each production
of a grammar by a separate class� This object�
oriented approach to parsing has several advan�
tages� Encapsulating each syntactic construct as
an independent unit makes it easy to build an ab�
stract syntax tree� which can then be traversed
and decorated in successive passes� Di�erent se�
mantic actions can be applied to the same syn�
tax tree� thus permitting several tools to share
the same syntactic representation� Classes with
algorithms for semantic analysis and evaluation
can be developed independently� without having
to rewrite the code each time super�cial changes
are made to the language grammar�

The Ei�el parsing library restricts the produc�

tions to three kinds of construct� aggregate� choice
and sequence �their exact meaning will be de�
scribed in the next section�� Each construct has
a library class to inherit from� which implements
the parsing details applicable to constructs of that
type� All the user needs to do� is �ll in the con�
crete parts in the class text for each grammar con�
struct� Although this is simple enough to do for a
few classes� writing classes by hand for the gram�
mar of a realistic language is not feasible� partic�
ularly for an evolving grammar where they would
constantly have to be rewritten�

This renders the parsing library next to useless�
unless complemented by a program that can gen�
erate the classes needed directly from a grammar
description� Currently� there is no such genera�
tor in the Ei�el distribution� but ISE has made
one for internal use named yoocc �Yes�� an Object�
Oriented Compiler Compiler� in homage of yacc�
which is planned to be a product� but not yet re�
leased �HM��
� By courtesy of ISE� we were al�
lowed to reuse a set of classes for Ei�el source code
generation previously developed for yoocc when
building our own parser generator�

� Syntax notation

We use a straightforward extension of BNF to de�
scribe language syntax� which is very close to the
notation used for Ei�el in �Mey�

� augmented by
a special construct that permits tree transforma�
tions to be speci�ed for each production� We will
simply refer to it as EBNF �extended BNF�� It is
based on the following concepts�

Any syntactically identi�able part of a language
text� such as a query in a query language� an ex�
pression in an arithmetic language� an if statement
in a programming language etc�� is called a com�
ponent�

The structure of components of a certain cate�
gory is described by a construct� The correspond�
ing components are called specimens of the con�
struct� Every construct has a unique construct
name�

Every construct is either terminal or non�
terminal�

A terminal has only one specimen and no fur�
ther syntactical structure� In contrast a non�
terminal may have many di�erent specimens� and
is de�ned in terms of other constructs�
Terminals can be de�ned in two ways� as a

string constant or by typing the construct name
in capitals� The latter form refers to a token de�
�ned by a regular expression� This is described in
section ����
Non�terminals are de�ned by productions giving

the structure of the specimens of each construct�
A production has the form�

Construct�name � Right�hand�side �

In EBNF� every non�terminal construct appears
�through its construct name� as the left�hand side
of exactly one such production� On the other
hand� terminal constructs �by de�nition� only oc�
cur at the right�hand side of productions�
The right�hand side of a production consists of

an optional build description and then either an
aggregate �concatenation�� a choice� or a sequence
�repetition��
The build description speci�es what actions are

needed to turn the parse tree into a syntax tree�
These actions will also depend on the context� that
is� whether the construct is an aggregate� a choice
or a sequence� They will be described in section ��
EBNF also contains a �commit� mechanism

similar to Prolog�s �cut�� to guide the parser for
better error reporting�

��� Aggregate

An aggregate construct is a non�empty sequence
of constructs �parts�� to be concatenated in the
given order� Optional parts are written in square
brackets� For example

a � b �c� D �

expresses that an a consists of a b� followed by
zero or one c� followed by the terminal D�

��� Choice

A choice construct is a list of alternative con�
structs separated by vertical bars� as in

�

e � f � g � h �

This means that an e is either an f� a g� or an h�

��� Sequence

A sequence construct describes variable length
lists of specimens of a given construct� separated
�if more than one� by a given separator� If base
is the construct and separator is the separator�
then the sequence construct has one of the follow�
ing forms�

s � � base separator ��� � �

s � � base separator ��� �	 �

The �rst form allows s to be empty� while the
second form requires at least one specimen of
base� The separator is optional� and may be a
string constant or a construct�
The following three variants are thus valid se�

quence speci�cations�

var�list � � identifier ��� �	 �

var�list � � identifier
�
 ��� �	 �

expr � � integer arith�op ��� �	 �

the �rst one specifying no separator� the second
a �xed string separator� and the third a general
construct separator�

��� De�nition of terminals

The words and symbols recognized by a lexical
scanner are commonly called tokens� Each token
has a token type and a token value� A terminal
construct corresponds exactly to the set of tokens
of a given type�

The token value for a given terminal may be
�xed� such as a keyword or an operator symbol� or
variable� such as a number or an identi�er� Token
de�nitions have the following form�

Name�� Regular�expression��

Name�
 Regular�expression�

���

The Ei�el notation �HM��
 is used to specify reg�
ular expressions� supporting the usual construc�
tion mechanisms for arbitrary character� intervals�

grouping� alternation� repetition� concatenation�
optional components� and set di�erence�roughly
equivalent to those of lex �LS�	
�

��� Example

As an example we give an EBNF description of
the EBNF language itself�

grammar ebnf �

lang �
grammar
 NON TERMINAL ID
�

�ebnf grammar�
end

�
 �

ebnf grammar � f statement ��� g	 �

statement � NON TERMINAL ID
�

�build description� production
�
 �

build description �
�
 �
�
 A STRING

�build tail�
�
 �

build tail �
�
 � NON TERMINAL ID �

production � ebnf choice � ebnf aggregate

� ebnf sequence �

ebnf choice � id or string
�
 choice tail

�

id or string � identifier � A STRING �

identifier � TERMINAL ID � NON TERMINAL ID

�

choice tail � f id or string
�
 ��� g	 �

ebnf aggregate � f opt req com ��� g	 �

opt req com � commit tag � opt construct �

req construct �

commit tag �
�
 �

opt construct �
�
 req construct
�
 �

req construct � id or string �

ebnf sequence � non empty seq �

poss empty seq �

non empty seq �
f
 id or string

�id or string�
���

g	
 �

�

poss empty seq �
f
 id or string

�id or string�
���

g
 �

end �

The terminals of EBNF� typed in upper case
letters above� are de�ned as follows�

A�string �
�

 ��
�

�

Non�terminal�id ���a����z��

�����a����z�� � ��� � �����������

Terminal�id ���A����Z��

�����A����Z�� � ��� � �����������

The �� symbol accepts any string up to and in�
cluding the succeeding string �in this case a single

 �� The � separates alternatives and the � is
the Kleene closure operator in pre�x form �match�
ing zero or more occurrences of the operand�� The
pre�x operator � is used to force case sensitivity
for an expression�

� Parse trees and syntax trees

In recursive descent parsing� the parse tree is a
trace of the parsing process� Thus all intermedi�
ate levels in the grammar are present in the parse
tree� These levels cannot in general be removed
from the grammar because this may introduce am�
biguity� that is� it may become possible to parse
an expression in more than one way�
Moreover� it is often desirable to write highly

structured grammars that can be easily read and
understood by humans� thus also serving as pre�
cise documentation of the language syntax� It is
therefore unavoidable that the parse tree contains
nodes which carry no semantic information�
A syntax tree on the other hand� contains only

nodes that are essential for evaluation� In other
words� only terminal symbols occur as nodes in
a syntax tree �and in some special cases� newly
created nodes��

This is best understood by looking at an exam�
ple�

��� Example

Consider the grammar for simple arithmetic ex�
pressions�

grammar g �

expression � � term
	
 ��� �	 �

term � � factor
�
 ��� �	 �

factor � UNSIGNED�INT � par�expr �

par�expr �
�
 expression
�
 �

end �

Here UNSIGNED�INT is lexically de�ned as�
Unsigned int ���������� �����������

The parse tree and syntax tree for the expres�
sion � �
 � � can be illustrated as in �gure ��
Note that a straightforward tree evaluation of the
expression is not possible in the parse tree�
The desired syntax tree is smaller than its parse

tree� This di�erence in size obviously depends on
the grammar and the expression parsed� but ratios
like � � �� are not unusual�

� Transforming a parse tree

Building a syntax tree from a parse tree is done
in a depth �rst� post action manner� Thus� at
a certain level� all children of a parse tree node
have already been transformed into syntax sub�
trees� This enables us to focus on the current level
and forget about lower levels in each step of the
transformation�
The optional build description that can be at�

tached to each production speci�es the resulting
syntax subtree in terms of the corresponding parse
tree node and its �already transformed� children�
The speci�cation elements applicable to each type
of construct will be described in the following sec�
tions� But �rst some general concepts�
In what follows� we take the tree viewpoint �in

the graph meaning� when talking about produc�
tions� This means we will refer to the children of
a construct� For example� the construct

a � b �c� D �

has three children� The second child is optional
and might not be present in the statement parsed�
but is always present in the parse tree in order
to keep the natural enumeration of the children
independent of optional constructs�
To distinguish parsed children from omitted op�

tional ones� we say that a construct is complete if it

	

is completely recognized� that is� all non optional
children are complete� A terminal is complete if
it matches a token� Thus if c in the production
above is not present �not complete�� and b and D

are complete then a is complete�

As de�ned in section ��	� a build description
consists of a string called description string or
just description and an optional identi�er which
we will call the new�name� A new�name may only
be given when the description speci�es that a new
node is to be inserted at this point� and will then
become its label�

We will now explain the speci�cation elements
available for each type of construct�

��� Transforming an aggregate

Since aggregates can have any �xed number of
subconstructs� a �exible notation for specifying re�
arrangement of syntax tree nodes is needed� For
this� we use a pattern which attempts to draw an
image of the resulting syntax subtree�

A � indicates that a new top node is to be cre�
ated� and a � signi�es the start of a subtree� The
children of the current node are referred to by
number� Parentheses may be used for grouping�
and lists of blank separated node references will
become siblings� A single node number enclosed
in �� refers to the list of the corresponding node�s
children�

Thus�
��� �� makes the second child the new
top node� with the �rst and fourth child as its chil�
dren� ����� creates a new top node �labeled new�
name� if given� otherwise given a temporary name�
and adopts all the children of the third child� and
������
 creates a vertical branch from a permu�
tation of the �rst four children of the current parse
tree node�

An example of a deeply nested transformation
description is given in �gure
�

The following semantic rules constrain what
patterns are valid�

�� The numbers in a pattern must not be greater
than the number of children of the current
aggregate� and each number can be used at
most once in a pattern�

� When f is to be a father of one or several
children then these are always inserted before
the children that f already has �if any��

�� The only time an optional child c can be fa�
ther of another child in a pattern is when c

occurs �rst in the pattern and c gets just one
child� If c is not complete then the child of c
in the pattern acts as father�

�� If an optional child is not present and it is a
leaf in a pattern� then it does not generate
any node in the syntax tree�

The pattern ��ALL can be used as abbreviation
to collect all complete children under a new node�

��� Transforming a sequence

Sequences need much less �exibility� since they can
only contain two construct types� the base element
and the separator� A �xed number of alternative
speci�cations is enough�

��ALL Keep the structure of the parse tree� This
is done by creating a new node in the syntax
tree and make it father of all complete chil�
dren of the current sequence� including sep�
arators� If a new�name was speci�ed� it be�
comes the label of the new node� otherwise a
temporary name is assigned�

LTREE Build a binary tree from the sequence of
operands and operators �where the separators
are interpreted as operators�� assuming left�
to�right association� The top operator of the
binary tree becomes the top node of the syn�
tax tree� If there is only one element in the
sequence of children �hence no operators�� the
only child instead becomes the top node of the
syntax tree� �Only applies to sequences with
separators��

��LTREE Like LTREE� but a new node is created
and becomes the top node� thus adding an
extra level� This is sometimes desirable for
semantic processing�

RTREE Analogous to LTREE assuming right�to�left
association�

�

��RTREE Analogous to ��LTREE assuming right�
to�left association�

BSEQ The separator is interpreted as an operator�
and becomes the top node having all base el�
ements as children� If there is just one child
�namely a base element� then it becomes the
top node�

Only applicable for sequences with �xed sep�
arator�

��BSEQ Like BSEQ� but a new node is created and
becomes the top node�

��� Transforming a choice

There is only one possible action on complete
choices� the retained child becomes the new top
node�

��� Transforming a terminal

Since terminals have no children� no transforma�
tion description is needed� Each parsed terminal
becomes a single�node syntax tree �a leaf�� Later�
this leaf may be moved to become an inner node
of the tree� A typical example of this are the op�
erators of �gure ��

��� Examples

To visualize the successive transformation of a
parse tree into a syntax tree� consider the follow�
ing conditional expression�

if c then x � y � z else f �x� y� z�

A simpli�ed parse tree for the expression is shown
in �gure ��

Traversing the parse tree left�to�right� depth
�rst� shows the successive transformations taking
place at individual nodes according to a plausible
speci�cation�

First� we encounter the construct cond where
no speci�cation has been given� The default be�
havior� when there is only one child� is to simply
lift the child up to current level as in �gure �� For
sizable grammars� particularly highly structured
ones� the majority of tranformations in a parse

tree will in fact often be this basic �pruning� of
the tree� This is not surprising� since the result is
often a size reduction by an order of magnitude�
Next� we �nd the construct term which trans�

forms its sequence into a binary operator tree
through the pattern LTREE ��gure 	�� The result
replaces� in the next step� the expr construct of
the then�part through default behavior�
We then proceed to construct alist� where �g�

ure � shows how a BSEQ speci�cation collects the
comma�separated argument list�
The parentheses are removed by
 ��gure ���

and the arguments are collected directly under the
function identi�er through pattern ���
�� lifting
the sublist one level ��gure ��� This identi�er then
replaces the expr construct of the else�part�
Finally� the keywords are removed from the con�

ditional expression using the selection ���
 � ���
and we are left with a pure syntax tree� ready for
semantic checking and evaluation� as shown in �g�
ure ��
We conclude by showing the grammar G of sec�

tion 	�� with build descriptions added to do the
transformation depicted in �gure ��

grammar g �

expression � ��
LTREE
�

� term add�op ��� �	 �

term � ��
LTREE
�

� factor mul�op ��� �	 �

factor � UNSIGNED�INT � par�expr �

par�expr � ��

�

�
 expression
�
 �

add�op �
	
 �

mul�op �
�
 �

end �

� The parser generator

The parser generator PG is an Ei�el program
which will read a language de�nition L in EBNF�
and generate an Ei�el program that correctly
parses L�
PG and the generated parsers make heavy use

of the ISE Ei�el class libraries mentioned in sec�
tions
�� for high level data structures� recursive
descent parsing and lexical analysis�

�

We have made some modi�cations to the pars�
ing and lexical libraries� For example� a gen�
eral construct is now allowed as separator in a
sequence �only string constants were supported��
the communication between parser and scanner
has been made dynamic� so lexical de�nitions can
be changed without recompilation �before� lexical
token type numbers had to be compiled into the
parser��

We have also corrected some minor bugs� and
made some extensions� The extensions include
features for transforming the parse tree into a syn�
tax tree� as well as printing and tracing facilities�

The generated parsers are sets of classes that in�
herit from the parsing library� The only class that
must be programmed by hand is a small root class�
which plays the role of main program in object�
oriented contexts� The rest is automatically gen�
erated by PG�

��� How to use PG

PG makes it very easy to change the language
while the compiler is being implemented� Initially�
the user performs the following steps�

�� Create a language�de�nition �le containing an
EBNF de�nition of the language to be parsed�

� Create a token�de�nition �le containing reg�
ular expressions de�ning lexical tokens�

�� Program a root class for the parser to be gen�
erated� This is a minimal programming task�

�� Run PG on the language�de�nition�

	� Compile and run the parser�

If the user is not satis�ed with the language�
he makes the desired changes in the language�
de�nition and executes steps ��	 again�

If a di�erent set of token values is needed� then
the old token�de�nition is replaced by a correct
one� Unless there was a token name change in
the lexical description �thus forcing a grammar
change�� no recompilation is needed� the parser
is just reexecuted�

��� About the generated code

The classes generated by PG are placed in two
clusters corresponding to the UNIX directories
Language and Semantics�
The Language cluster contains the actual parser

classes� which are descendants to classes in the
parsing library� The Semantics cluster contains
skeletons for evaluation classes corresponding to
all terminal operators in the grammar� as well as
to all new�names given in the build descriptions�
A naming convention is used to distinguish ter�

minals that will not appear in the syntax tree
�and thus should not have evaluation classes� from
those who play the role of operators�
Finally� a few words about run�time e�ciency�

The parsers generated with the current Ei�el
��
implementation are slow performers �about � sec�
ond per line of query�� We have not tried to make
any detailed measurements� but it is clear that
most of the time is spent generating the �often
huge� parse trees�
Partly this may be inherent in the approach

�which is then the price to pay for automation��
but we suspect that much can be done in terms of
more e�cient tree structures� improved generated
code from the Ei�el compiler etc�
So far� the long compilation times for the gener�

ated parsers �around ��� classes for a very expres�
sive query language� and the slow parsing have
been somewhat annoying� but has been more than
o�set by the extreme �exibility of the approach�
With future Ei�el releases� we hope that per�

formance will cease to be a problem� at least for
research compilers�

	 Conclusions

This paper has presented a method to augment
a BNF language description with annotations de�
scribing the simple tree manipulations needed to
transform a parse tree for a language sentence into
a syntax tree�
The method has enabled us to develop an

object�oriented parser generator� whose generated
parsers will produce a syntax tree directly from
a language sentence� The syntax tree will only

�

contain terminal operators and a �in most cases
small� number of separately speci�ed nodes�

The idea is that the set of terminal operators
and new nodes re�ects the semantic core of the
language� and is normally much more stable than
the set of grammar constructs for a language un�
der development�

So by con�ning the implementation of seman�
tic checking and evaluation to classes correspond�
ing to these nodes� signi�cant syntactical language
changes can be made without a�ecting any hand
written code at all� whereas in more traditional en�
vironments this would mean constant revolutions�

We feel that the idea of modeling each syntac�
tic construct as a separate abstraction �class� is
indeed a strong one� making it very easy to suc�
cessively decorate an abstract syntax tree and add
various semantic actions to it� We were able to im�
plement the scheme described in this paper with
very little e�ort in our Ei�el environment� whereas
in a traditional setting we believe the cost would
have been to high�

The practical productivity gain using the ap�
proach has been great indeed� and we �rmly be�
lieve that object�oriented techniques have the po�
tential to carry the art of automatic compiler gen�
eration several steps further�

The transformation technique described in this
paper can be used as a small building block in dif�
ferent language prototyping contexts� For a much
more ambitious e�ort� aiming at creating an in�
tegrated incremental language development envi�
ronment� see �MB���
�

Acknowledgements

The authors are grateful to Per Svensson� National
Defence Research Establishment� for valuable dis�
cussions�

References

�FL��
 Charles N� Fisher and Richard J�
LeBlanc� Jr� Crafting a Compiler with
C� Benjamin�Cummings� �����

�HM��
 Philip Hucklesby and Bertrand Meyer�
The Ei�el Object�Oriented Parsing Li�
brary� In Technology of Object�Oriented
Languages and Systems �TOOLS ���
pages 	���	��� Paris� France� Nov �����
Soci�et�e des Outils du Logiciel�

�Joh�	
 Stephen C� Johnson� Yacc� Yet Another
Compiler�Compiler� Comp� Sci� Tech�
Rep� �
� Bell Laboratories� Murray Hill�
NJ� July ���	�

�LS�	
 Mike E� Lesk and Eric Schmidt� Lex � A
Lexical Analyzer Generator� Comp� Sci�
Tech� Rep� ��� Bell Laboratories� Mur�
ray Hill� NJ� Oct ���	�

�MB���
 Boris Magnusson� Mats Bengtsson�
Lars�Ove Dahlin� G�oran Fries� Anders
Gustavsson� G�orel Hedin� Sten Min�or�
Dan Oscarsson� and Magnus Taube� An
Overview of The Mj lner�ORM Envi�
ronment� Incremental Language and
Software Development� In Technology
of Object�Oriented Languages and Sys�
tems �TOOLS ��� pages ��	����� Paris�
France� March ����� Prentice�Hall�

�Mey�

 Bertrand Meyer� Ei�el� The Language�
Prentice Hall� ���
�

�MN��
 Bertrand Meyer and Jean�Marc Nerson�
Ei�el� The Libraries� Interactive Soft�
ware Engineering Inc�� Oct ����� Ver�
sion
���

�SZ��
 Per Svensson and Huang Zhexue� Geo�
SAL� A query language for spatial
data analysis� In Advances in Spa�
tial Databases� pages �������� Lecture
Notes in Computer Science Vol� 	
	�
Springer�Verlag� �����

�

�
 �

u u u

f f � f

t � t

e

�
�

l
l

�
�

� �
b

b
bb

�

� �

 �

�
�

l
l

�
�

l
l

Figure �� Parse tree to the left and syntax tree to the right�
Legend� e ! expression� t ! term� f ! factor and u ! unsigned int

p

a b c d e f g h

a� e� e

� � � � � �

� � � �

�
�

�
�

HHHH

PPPPPP

XXXXXXXXX

� � JJ

h

b d

a c

e� e
 a�

� � AA

� � AA

�
�

�
�

Figure
� Complex aggregate transformation
���
����� � �� ��

cond expr

if cond then expr else expr

c term fcall

x � y � z f args

� alist �

x � y � z

� � � � � � � � �

	 	 	 	 	 	
�

� �
SS PPPPP

hhhhhhhhhh

�
� �

 ee
b

bb
� � JJ

� � ��

�
� �

e
e

b
bb

Figure �� Simpli�ed parse tree for conditional expression

��

cond c

c

Figure �� Default transformation

term

x � y � z
�

� �

 ee
b

bb
�

� z

x y

� � LL

� � LL

Figure 	� Sequence transformation
LTREE

alist

x � y � z
�

� �

e

e
b

bb
�

x y z
�

�
�

�

Figure �� Sequence transformation
BSEQ

args

� � �

x y z

� � ��

�
�

�
�

�

x y z
�

�
�

�

Figure �� Aggregate transformation

fcall

f �

x y z

� � JJ

�
�

�
�

f

x y z
�

�
�

�

Figure �� Aggregate transformation
���
�

cond expr

if c then � else f

� z x y z

x y

	 	 	 	 	 	
� � � �

� � �� HHH
XXXXXX

� � LL � � JJ

� � LL

if

c � f

� z x y z

x y

�
� aaaa

� � LL � � JJ

� � LL

Figure �� Aggregate transformation
���
 � ��

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 839.055]
>> setpagedevice

