Automating the Development of

Syntax Tree (enerators

for an Evolving Language

Per Grape
National Defence Research Establishment

S-172 90 Sundbyberg, Sweden
pelleg@atlas.sto.foa.se

Kim Waldén

Enea Data AB
Box 232, S-183 23 Téaby, Sweden

kim@enea.se

Abstract

This paper describes an Eiffel system for rapid
testing of grammars. Grammars are defined in an
extended BNF notation that allows actions on the
parse tree nodes to be defined as additional an-
notations. The actions are high level descriptions
(not procedural code) to transform a parse tree
into a syntax tree. A parser, producing a syntax
tree for a language sentence, can be automatically
generated from the annotated grammar as a set of
classes.

The object-oriented environment permits a
much higher degree of separation between syn-
tax and semantics than is possible with tradi-
tional approaches. Structural grammar changes
can be made without affecting already developed
semantic routines. This gives a great advantage
for early compiler implementations, when the lan-
guage syntax is still evolving.

1 Introduction

When a new language of some complexity is cre-
ated, this will often force the development of a
number of successive compiler versions to support
its evolving syntax and semantics. Although auto-
matic parser generators like yacc [Joh75] can ease
the developer’s burden a great deal, they have a
number of limitations that make compiler mainte-
nance hard for an evolving language.

Since the syntactic and semantic elements are
mixed in a yace specification, a large amount of
recoding will often be needed as a result of mere
structural changes to the language grammar. The
lack of separation between syntax and semantics
also makes it hard to write several processors
for the same language, such as compiler, static
checker, pretty printer etc., without considerable
duplication of effort and risk of inconsistencies.
The abstraction support of a good object-oriented
language is what is needed to overcome some of
the limitations above.

This paper describes a parser generator writ-
ten in Eiffel [Mey92] and a high-level notation for
specifying actions to transform a parse tree into a
syntax tree. The notation is based on basic graph
transformations on trees, such as adding and re-

moving vertices, contracting edges and rearrang-
ing vertices. Given a grammar with annotated
transformations, the generated parser will recog-
nise a syntactically correct sentence of the lan-
guage and deliver an abstract syntax tree, which
can then be further processed by semantic rou-
tines.

If the set of keywords and operators are fairly
stable during development of the language, then
the generated syntax trees are expected to be at
least as stable, regardless of structural grammar
changes. This makes it possible to work efficiently
on the evaluation scheme before the language has
been frozen.

Since the syntax transformation directives are
high-level, the task of keeping them consistent
with the evolving language constructs becomes
easy. This may be contrasted with yacc, where
the actions to build a syntax tree have to be re-
coded in C each time the grammar is restructured.

The parser generator was designed to support
the development of an analytic query language
for geographical databases, called GeoSAL [SZ91].
The work was carried out as part of a joint project
between the National Defense Research Establish-
ment, NobelTech Systems AB, and Ericsson Radio
Systems AB. The project is part of a national re-
search and development program in information
technology.

2 The Eiffel environment

Among the attractive features of the Fiffel distri-
bution from Interactive Software Fngineering Inc.
(ISE) are substantial class libraries supporting
basic data structures, lexical analysis, and pars-
ing [MN90]. Thus for the most part, there is no
need for the user to implement common data ab-
stractions, such as lists, hash tables, trees, stacks
and queues, since these are directly available and
easily tailorable through subclassing.

The lexical library supports grammars of reg-
ular expressions, and provides approximately the
facilities of lex [LS75]. Instead of the preprocessor
approach of lex, the lexical classes contain oper-
ations to generate a lexical scanner from descrip-

tions in a file, and store it in internal object format
in another file for subsequent use.

The parsing library classes map the constructs
of an arbitrary LL(1) grammar, and provide op-
erations for recursive descent parsing of the cor-
responding language [HMS&9]. This is different
from yacc, which provides bottom up parsing of
LALR(1) languages (for an overview of compiling
techniques, see for example [F1.91]). The family of
languages that can be expressed with LL(1) gram-
mars is somewhat smaller than the correspond-
ing family for LALR(1) grammars. On the other
hand, most well-designed programming languages
can be turned into LL(1) form. Rare exceptions,
such as the C/Pascal dangling “else”, can usually
be taken care of by allowing the grammar to be
ambiguous and then let the parser apply disam-
biguating rules. (This technique is also employed
by yacc on LALR(1) grammars.)

Moreover, LL(1) parsing has the advantage of
much easier error reporting and recovery for the
compiler, compared to the LALR(1) technique. So
it suited our needs well, since we wanted to reduce
the effort of syntax control and spend as much
time as possible on the semantics of the language
under development.

3 Object-oriented parsing

The idea underlying the Eiffel parsing library,
which is a direct application of the phrase “syntax-
directed compiling”, is to model each production
of a grammar by a separate class. This object-
oriented approach to parsing has several advan-
tages. FEncapsulating each syntactic construct as
an independent unit makes it easy to build an ab-
stract syntax tree, which can then be traversed
and decorated in successive passes. Different se-
mantic actions can be applied to the same syn-
tax tree, thus permitting several tools to share
the same syntactic representation. Classes with
algorithms for semantic analysis and evaluation
can be developed independently, without having
to rewrite the code each time superficial changes
are made to the language grammar.

The Eiffel parsing library restricts the produc-

tions to three kinds of construct: aggregate, choice
and sequence (their exact meaning will be de-
scribed in the next section). Each construct has
a library class to inherit from, which implements
the parsing details applicable to constructs of that
type. All the user needs to do, is fill in the con-
crete partsin the class text for each grammar con-
struct. Although this is simple enough to do for a
few classes, writing classes by hand for the gram-
mar of a realistic language is not feasible, partic-
ularly for an evolving grammar where they would
constantly have to be rewritten.

This renders the parsing library next to useless,
unless complemented by a program that can gen-
erate the classes needed directly from a grammar
description. Currently, there is no such genera-
tor in the Eiffel distribution, but ISE has made
one for internal use named yoocc (Yes!, an Object-
Oriented Compiler Compiler) in homage of yace,
which is planned to be a product, but not yet re-
leased [HM8&9]. By courtesy of ISE, we were al-
lowed to reuse a set of classes for Eiffel source code
generation previously developed for yoocc when
building our own parser generator.

4 Syntax notation

We use a straightforward extension of BNF to de-
scribe language syntax, which is very close to the
notation used for Eiffel in [Mey92], augmented by
a special construct that permits tree transforma-
tions to be specified for each production. We will
simply refer to it as EBNF (extended BNF). It is
based on the following concepts.

Any syntactically identifiable part of a language
text, such as a query in a query language, an ex-
pression in an arithmetic language, an if statement
in a programming language etc., is called a com-
ponent.

The structure of components of a certain cate-
gory is described by a construct. The correspond-
ing components are called specimens of the con-
struct. Every construct has a unique construct
name.

Every construct is either terminal or non-
terminal.

A terminal has only one specimen and no fur-
ther syntactical structure.
terminal may have many different specimens, and
is defined in terms of other constructs.

In contrast a non-

Terminals can be defined in two ways, as a
string constant or by typing the construct name
in capitals. The latter form refers to a token de-
fined by a regular expression. This is described in
section 4.4.

Non-terminals are defined by productions giving
the structure of the specimens of each construct.
A production has the form:

Construct_name : Right_hand_side ;

In EBNF, every non-terminal construct appears
(through its construct name) as the left-hand side
of exactly one such production. On the other
hand, terminal constructs (by definition) only oc-
cur at the right-hand side of productions.

The right-hand side of a production consists of
an optional build description and then either an
aggregate (concatenation), a choice, or a sequence
(repetition).

The build description specifies what actions are
needed to turn the parse tree into a syntax tree.
These actions will also depend on the context, that
is, whether the construct is an aggregate, a choice
or a sequence. They will be described in section 6.

EBNF also contains a “commit” mechanism
similar to Prolog’s “cut”, to guide the parser for
better error reporting.

4.1 Aggregate

An aggregate construct is a non-empty sequence
of constructs (parts), to be concatenated in the
given order. Optional parts are written in square
brackets. For example

a: b [c]D;

expresses that an a consists of a b, followed by
zero or one ¢, followed by the terminal D.

4.2 Choice

A choice construct is a list of alternative con-
structs separated by vertical bars, as in

e: flglh;

This means that an e is either an £, a g, or an h.

4.3 Sequence

A sequence construct describes variable length
lists of specimens of a given construct, separated
(if more than one) by a given separator. If base
is the construct and separator is the separator,
then the sequence construct has one of the follow-

ing forms:
s : { base separator ... } ;
s : { base separator ... }+ ;

The first form allows s to be empty, while the
second form requires at least one specimen of
base. The separator is optional, and may be a
string constant or a construct.

The following three variants are thus valid se-
quence specifications:

var_list : { identifier ... }+ ;
var_list : { identifier "," .
expr : { integer arith_op ... }+ ;

the first one specifying no separator, the second
a fixed string separator, and the third a general
construct separator.

4.4 Definition of terminals

The words and symbols recognized by a lexical
scanner are commonly called tokens. Fach token
has a token type and a token wvalue. A terminal
construct corresponds exactly to the set of tokens
of a given type.

The token value for a given terminal may be
fixed, such as a keyword or an operator symbol, or
variable, such as a number or an identifier. Token
definitions have the following form:

Name_1 Regular_expression_1
Name_2 Regular_expression_2

The Eiffel notation [HM89] is used to specify reg-
ular expressions, supporting the usual construc-
tion mechanisms for arbitrary character, intervals,

grouping, alternation, repetition, concatenation,
optional components, and set difference—roughly
equivalent to those of lex [LS75].

4.5 Example

As an example we give an EBNF description of
the EBNF language itself.

grammar ebnf ;

lang : "grammar' NON_TERMINAL_ID ";"
[ebnf _grammar] "end" ";"

ebnf_grammar : { statement ... }+ ;

: NON_TERMINAL_ID '":"
[build description] production ";"

statement

build description : "¥%" ! "[" A_STRING

[build tail] "]"

build_tail :

nono
N H

NON_TERMINAL_ID ;

production : ebnf_choice | ebnf_aggregate
| ebnf_sequence ;

ebnf _choice : id_or_string "|" choice_tail
>

id_or_string : identifier | A_STRING ;

identifier : TERMINAL_ID | NON_TERMINAL_ID

b

choice_tail o
IS

opt_reg.com : commit_tag | opt_construct |
req_construct ;

: { id_or_string "[|"

ebnf_aggregate : { opt_reqgcom ...

commit_tag : "!"

opt_construct : "[" req_construct "]"
reg_construct : id_or_string ;

ebnf_sequence : non_empty seq |
poss_empty_seq ;

"{" id_or_string
n n}_,_n ;

non_empty._seq :
[id_or_string] "..

"{" id_or_string

poss_empty_seq :
[id_or_string] "..

end ;

The terminals of EBNF, typed in upper case
letters above, are defined as follows:

A String (II\IIII _> II\IIII)
Non_terminal_id ~(’a’..’z?)

*("‘(;a)..)z)) I)_) I (;O)..)g)))
Terminal_id “(’A’..°Z7)
*(w(’A’..’Z’) I)_) I (;O)..)g)))

The -> symbol accepts any string up to and in-
cluding the succeeding string (in this case a single
"). The | separates alternatives and the * is
the Kleene closure operator in prefix form (match-
ing zero or more occurrences of the operand). The

prefix operator ~ is used to force case sensitivity

for an expression.

5 Parse trees and syntax trees

In recursive descent parsing, the parse tree is a
trace of the parsing process. Thus all intermedi-
ate levels in the grammar are present in the parse
tree. These levels cannot in general be removed
from the grammar because this may introduce am-
biguity, that is, it may become possible to parse
an expression in more than one way.

Moreover, it is often desirable to write highly
structured grammars that can be easily read and
understood by humans, thus also serving as pre-
cise documentation of the language syntax. It is
therefore unavoidable that the parse tree contains
nodes which carry no semantic information.

A syntax tree on the other hand, contains only
nodes that are essential for evaluation. In other
words, only terminal symbols occur as nodes in
a syntax tree (and in some special cases, newly
created nodes).

This is best understood by looking at an exam-
ple.

5.1 Example

Consider the grammar for simple arithmetic ex-
pressions.

grammar g ;

expression : { term "+" .3

term : { factor "x" .
factor : UNSIGNED_INT | par_expr ;
par_expr "(" expression ")"

end ;

Here UNSIGNED_INT is lexically defined as:

Unsigned_int (°1°..°97) *(°0’..797)

The parse tree and syntax tree for the expres-
sion 1 4+ 2 % 3 can be illustrated as in figure 1.
Note that a straightforward tree evaluation of the
expression is not possible in the parse tree.

The desired syntax tree is smaller than its parse
tree. This difference in size obviously depends on
the grammar and the expression parsed, but ratios
like 1 : 10 are not unusual.

6 Transforming a parse tree

Building a syntax tree from a parse tree is done
in a depth first, post action manner. Thus, at
a certain level, all children of a parse tree node
have already been transformed into syntax sub-
trees. This enables us to focus on the current level
and forget about lower levels in each step of the
transformation.

The optional build description that can be at-
tached to each production specifies the resulting
syntax subtree in terms of the corresponding parse
tree node and its (already transformed) children.
The specification elements applicable to each type
of construct will be described in the following sec-
tions. But first some general concepts.

In what follows, we take the tree viewpoint (in
the graph meaning) when talking about produc-
tions. This means we will refer to the children of
a construct. For example, the construct

a: b [c]D;

has three children. The second child is optional
and might not be present in the statement parsed,
but is always present in the parse tree in order
to keep the natural enumeration of the children
independent of optional constructs.

To distinguish parsed children from omitted op-
tional ones, we say that a construct is complete if it

is completely recognized, that is, all non optional
children are complete. A terminal is complete if
it matches a token. Thus if ¢ in the production
above is not present (not complete), and b and D
are complete then a is complete.

As defined in section 4.5, a build description
consists of a string called description string or
just description and an optional identifier which
we will call the new-name. A new-name may only
be given when the description specifies that a new
node is to be inserted at this point, and will then
become its label.

We will now explain the specification elements
available for each type of construct.

6.1 Transforming an aggregate

Since aggregates can have any fixed number of
subconstructs, a flexible notation for specifying re-
arrangement of syntax tree nodes is needed. For
this, we use a pattern which attempts to draw an
image of the resulting syntax subtree.

A * indicates that a new top node is to be cre-
ated, and a - signifies the start of a subtree. The
children of the current node are referred to by
number. Parentheses may be used for grouping,
and lists of blank separated node references will
become siblings. A single node number enclosed
in <> refers to the list of the corresponding node’s
children.

Thus, 2-(1 4) makes the second child the new
top node, with the first and fourth child as its chil-
dren, *-<3> creates a new top node (labeled new-
name, if given, otherwise given a temporary name)
and adopts all the children of the third child, and
3-1-4-2 creates a vertical branch from a permu-
tation of the first four children of the current parse
tree node.

An example of a deeply nested transformation
description is given in figure 2.

The following semantic rules constrain what
patterns are valid:

1. The numbers in a pattern must not be greater
than the number of children of the current
aggregate, and each number can be used at
most once in a pattern.

2. When £ is to be a father of one or several
children then these are always inserted before
the children that £ already has (if any).

3. The only time an optional child ¢ can be fa-
ther of another child in a pattern is when ¢
occurs first in the pattern and c gets just one
child. If ¢ is not complete then the child of ¢
in the pattern acts as father.

4. If an optional child is not present and it is a
leaf in a pattern, then it does not generate
any node in the syntax tree.

The pattern *-ALL can be used as abbreviation
to collect all complete children under a new node.

6.2 Transforming a sequence

Sequences need much less flexibility, since they can
only contain two construct types, the base element
and the separator. A fixed number of alternative
specifications is enough:

*-ALL Keep the structure of the parse tree. This
is done by creating a new node in the syntax
tree and make it father of all complete chil-
dren of the current sequence, including sep-
arators. If a new-name was specified, it be-
comes the label of the new node, otherwise a
temporary name is assigned.

LTREE Build a binary tree from the sequence of
operands and operators (where the separators
are interpreted as operators), assuming left-
to-right association. The top operator of the
binary tree becomes the top node of the syn-
tax tree. If there is only one element in the
sequence of children (hence no operators), the
only child instead becomes the top node of the
syntax tree. (Only applies to sequences with
separators.)

*-LTREE Like LTREE, but a new node is created
and becomes the top node, thus adding an
extra level.
semantic processing.

This is sometimes desirable for

RTREE Analogous to LTREE assuming right-to-left
association.

*-RTREE Analogous to *-LTREE assuming right-
to-left association.

BSEQ The separator is interpreted as an operator,
and becomes the top node having all base el-
ements as children. If there is just one child
(namely a base element) then it becomes the
top node.

Only applicable for sequences with fixed sep-
arator.

*-BSEQ Like BSEQ, but a new node is created and
becomes the top node.

6.3 Transforming a choice

There is only one possible action on complete
choices: the retained child becomes the new top
node.

6.4 Transforming a terminal

Since terminals have no children, no transforma-
tion description is needed. Each parsed terminal
becomes a single-node syntax tree (a leaf). Later,
this leaf may be moved to become an inner node
of the tree. A typical example of this are the op-
erators of figure 1.

6.5 Examples

To visualize the successive transformation of a
parse tree into a syntax tree, consider the follow-
ing conditional expression:

if ¢ then x * y / z else f (x, y, 2)

A simplified parse tree for the expression is shown
in figure 3.

Traversing the parse tree left-to-right, depth
first, shows the successive transformations taking
place at individual nodes according to a plausible
specification.

First, we encounter the construct cond where
no specification has been given. The default be-
havior, when there is only one child, is to simply
lift the child up to current level as in figure 4. For
sizable grammars, particularly highly structured
ones, the majority of tranformations in a parse

tree will in fact often be this basic “pruning” of
the tree. This is not surprising, since the result is
often a size reduction by an order of magnitude.

Next, we find the construct term which trans-
forms its sequence into a binary operator tree
through the pattern LTREE (figure 5). The result
replaces, in the next step, the expr construct of
the then-part through default behavior.

We then proceed to construct alist, where fig-
ure 6 shows how a BSEQ specification collects the
comma-separated argument list.

The parentheses are removed by 2 (figure 7),
and the arguments are collected directly under the
function identifier through pattern 1-<2>, lifting
the sublist one level (figure 8). This identifier then
replaces the expr construct of the else-part.

Finally, the keywords are removed from the con-
ditional expression using the selection 1-(2 4 6),
and we are left with a pure syntax tree, ready for
semantic checking and evaluation, as shown in fig-
ure 9.

We conclude by showing the grammar G of sec-
tion 5.1 with build descriptions added to do the
transformation depicted in figure 1:

grammar g ;

expression : J["LTREE"]

{ term add_op ... }+ ;
term : %["LTREE"]

{ factor mul_op ... }+ ;
factor : UNSIGNED_INT | par_expr ;
par_expr : %["2"]

"(" expression ")"
add_op vt
mul_op !
end ;

7 The parser generator

The parser generator PG is an FEiffel program
which will read a language definition L in EBNF',
and generate an FEiffel program that correctly
parses L.

PG and the generated parsers make heavy use
of the ISE Fiffel class libraries mentioned in sec-
tions 2-3 for high level data structures, recursive
descent parsing and lexical analysis.

We have made some modifications to the pars-
ing and lexical libraries. For example, a gen-
eral construct is now allowed as separator in a
sequence (only string constants were supported),
the communication between parser and scanner
has been made dynamic, so lexical definitions can
be changed without recompilation (before, lexical
token type numbers had to be compiled into the
parser).

We have also corrected some minor bugs, and
made some extensions.
features for transforming the parse tree into a syn-
tax tree, as well as printing and tracing facilities.

The extensions include

The generated parsers are sets of classes that in-
herit from the parsing library. The only class that
must be programmed by hand is a small root class,
which plays the role of main program in object-
oriented contexts. The rest is automatically gen-
erated by PG.

7.1 How to use PG

PG makes it very easy to change the language
while the compiler is being implemented. Initially,
the user performs the following steps:

1. Create a language-definition file containing an
EBNF definition of the language to be parsed.

2. Create a token-definition file containing reg-
ular expressions defining lexical tokens.

3. Program a root class for the parser to be gen-
erated. This is a minimal programming task.

4. Run PG on the language-definition.
5. Compile and run the parser.

If the user is not satisfied with the language,
he makes the desired changes in the language-
definition and executes steps 4-5 again.

If a different set of token values is needed, then
the old token-definition is replaced by a correct
Unless there was a token name change in
the lexical description (thus forcing a grammar
change), no recompilation is needed, the parser
is just reexecuted.

one.

7.2 About the generated code

The classes generated by PG are placed in two
clusters corresponding to the UNIX directories
Language and Semantics.

The Language cluster contains the actual parser
classes, which are descendants to classes in the
parsing library. The Semantics cluster contains
skeletons for evaluation classes corresponding to
all terminal operators in the grammar, as well as
to all new-names given in the build descriptions.

A naming convention is used to distinguish ter-
minals that will not appear in the syntax tree
(and thus should not have evaluation classes) from
those who play the role of operators.

Finally, a few words about run-time efficiency.
The parsers generated with the current Fiffel 2.3
implementation are slow performers (about 1 sec-
ond per line of query). We have not tried to make
any detailed measurements, but it is clear that
most of the time is spent generating the (often
huge) parse trees.

Partly this may be inherent in the approach
(which is then the price to pay for automation),
but we suspect that much can be done in terms of
more efficient tree structures, improved generated
code from the Eiffel compiler etc.

So far, the long compilation times for the gener-
ated parsers (around 300 classes for a very expres-
sive query language) and the slow parsing have
been somewhat annoying, but has been more than
offset by the extreme flexibility of the approach.

With future Eiffel releases, we hope that per-
formance will cease to be a problem, at least for
research compilers.

8 Conclusions

This paper has presented a method to augment
a BNF language description with annotations de-
scribing the simple tree manipulations needed to
transform a parse tree for a language sentence into
a syntax tree.

The method has enabled us to develop an
object-oriented parser generator, whose generated
parsers will produce a syntax tree directly from
a language sentence. The syntax tree will only

contain terminal operators and a (in most cases
small) number of separately specified nodes.

The idea is that the set of terminal operators
and new nodes reflects the semantic core of the
language, and is normally much more stable than
the set of grammar constructs for a language un-
der development.

So by confining the implementation of seman-
tic checking and evaluation to classes correspond-
ing to these nodes, significant syntactical language
changes can be made without affecting any hand
written code at all, whereas in more traditional en-
vironments this would mean constant revolutions.

We feel that the idea of modeling each syntac-
tic construct as a separate abstraction (class) is
indeed a strong one, making it very easy to suc-
cessively decorate an abstract syntax tree and add
various semantic actions to it. We were able to im-
plement the scheme described in this paper with
very little effort in our Eiffel environment, whereas
in a traditional setting we believe the cost would
have been to high.

The practical productivity gain using the ap-
proach has been great indeed, and we firmly be-
lieve that object-oriented techniques have the po-
tential to carry the art of automatic compiler gen-
eration several steps further.

The transformation technique described in this
paper can be used as a small building block in dif-
ferent language prototyping contexts. For a much
more ambitious effort, aiming at creating an in-
tegrated incremental language development envi-
ronment, see [MB190].

Acknowledgements

The authors are grateful to Per Svensson, National
Defence Research Establishment, for valuable dis-
cussions.

References

[FL91] Charles N. Fisher and Richard J.
LeBlanc, Jr. Crafting a Compiler with

C. Benjamin/Cummings, 1991.

[HMS89]

[Joh75]

[LS75]

[MB+90]

[Mey92]

[MN90]

[S791]

Philip Hucklesby and Bertrand Meyer.
The Eiffel Object-Oriented Parsing Li-
brary. In Technology of Object-Oriented
Languages and Systems (TOOLS 1),
pages 501-507, Paris, France, Nov 1989.
Société des Outils du Logiciel.

Stephen C. Johnson. Yacc: Yet Another
Compiler-Compiler. Comp. Sci. Tech,
Rep. 32, Bell Laboratories, Murray Hill,
NJ, July 1975.

Mike E. Lesk and Eric Schmidt. Lex - A
Lexical Analyzer Generator. Comp. Sci.
Tech, Rep. 39, Bell Laboratories, Mur-
ray Hill, NJ, Oct 1975.

Boris Magnusson, Mats Bengtsson,
Lars-Ove Dahlin, Goéran Fries, Anders
Gustavsson, Gorel Hedin, Sten Minér,
Dan Oscarsson, and Magnus Taube. An
Overview of The Mjglner/ORM Envi-
ronment: Incremental Language and
Software Development. In Technology
of Object-Oriented Languages and Sys-
tems (TOOLS 2), pages 635-646, Paris,
France, March 1990. Prentice-Hall.

Bertrand Meyer. Fiffel: The Language.
Prentice Hall, 1992.

Bertrand Meyer and Jean-Marc Nerson.
FEiffel: The Libraries. Interactive Soft-
ware Iingineering Inc., Oct 1990. Ver-
sion 2.3.

Per Svensson and Huang Zhexue. Geo-
SAL: A query language for spatial
data analysis. In Advances in Spa-
tial Databases, pages 119-140. Lecture
Notes in Computer Science Vol. 525,
Springer-Verlag, 1991.

FERN N
/ |\ N

- —a —F —
N — = — =
W—0g —

Figure 1: Parse tree to the left and syntax tree to the right.
Legend: e = expression, t = term, f = factor and u = unsigned_int

N Ay
| /\ /\

al el e?
/ | \

el e? al

Figure 2: Complex aggregate transformation "8-(2-(1-<56> 3) 4)"

cond_expr
P N e
if cond then expr expr
| | |
c term feall
N / \
X *x y |/ oz args
/ | \
alist

//|\\

Figure 3: Simplified parse tree for conditional expression

10

cond C

C

Figure 4: Default transformation

term /
NN /\
X *x y /| oz * z
/\
Xy
Figure 5: Sequence transformation "LTREE"
alist)
SN AN
X ’ y) Z X y Z
Figure 6: Sequence transformation "BSEQ"

/”fs\ PARN
/ | \

Figure 7: Aggregate transformation "2"

fcall f

f/ \ N
” X y Z

X/ §|7 \z

Figure 8: Aggregate transformation "1-<2>"

cond eXpr if
c then else f

ATN A N
A A

Figure 9: Aggregate transformation "1-(2 4 6)"

11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 839.055]
>> setpagedevice

